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a CNRS & Sorbonne Université, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
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A B S T R A C T

The recent roadmap IndOOS-2 has stressed the need to expand the biogeochemical-Argo observing system in the 
Indian Ocean. The Monaco Explorations Indian Ocean expedition offered a unique opportunity to meet this goal 
in the southwestern sector which was, in this regard and at that time, one of the least covered oceanic regions. 
We designed a deployment strategy for the biogeochemical float array grounded on past experiences, existing 
knowledge, and the analysis of historical datasets to cover the contrasting biophysical regimes from the 
Seychelles Chagos Thermocline Ridge to the subtropical gyre. Aligning with IndOOS-2 recommendations, a 
denser float distribution was set in the tropical band to enhance biogeochemical observations in upwelling zones. 
Following this strategy, a fleet of seventeen biogeochemical floats was successfully deployed during the expe
dition in October–November 2022. After two years of operations, the spatio-temporal distribution covered by the 
fleet confirmed that the goals of the deployment strategy have been reached, revealing seasonal modulations of 
the meridional trophic gradient with respect to phytoplankton biomass from tropical mesotrophy to subtropical 
oligotrophy.

1. Introduction

Observing the oceans is one of the most challenging issues in present- 
day Earth sciences. Although satellites significantly mitigate the chronic 
lack of ocean data (Munk, 2000; McClain, 2009; Groom et al., 2019; 
Shutler et al., 2024), space-based observations, confined to the sea 
surface, leave much of the ocean’s interior largely unexplored (Martin 
et al., 2020).

The Argo program represented an impressive step forward in filling 
these gaps by implementing a systematic observation network able to 
monitor temperature and salinity within the upper 2 km of the global 
ocean (Roemmich et al., 2009, 2019; Wong et al., 2020). Its biogeo
chemical component, BGC-Argo, operates profiling floats equipped with 
biogeochemical sensors (Claustre et al., 2020; Chai et al., 2020). The 
BGC-Argo program is currently in a global implementation phase 
(Biogeochemical-Argo Planning Group, 2016), following nearly a 
decade of technological developments and regional pilot studies, such as 
NAOS in the Mediterranean Sea (D’Ortenzio et al., 2020) or SOCCOM in 

the Southern Ocean (Sarmiento et al., 2023).
Despite advancements achieved by remote sensing and in-situ 

automated systems (Le Traon, 2013; Riser et al., 2016; Johnson et al., 
2022), ship-based observations remain essential to develop reference 
data collections. In this respect, international research programs are 
crucial to sustain these in-situ observational efforts. Such initiatives have 
coordinated repeated oceanographic sections like the Global Ocean 
Ship-Based Hydrographic Investigation Program (GO-SHIP, Talley et al., 
2017; Sloyan et al., 2019), building on the success of the World Ocean 
Circulation Experiment (WOCE, Thompson et al., 2001) and Climate and 
Ocean: Variability, Predictability, and Change project (CLIVAR). They 
have also supported the implementation of time series as part of 
long-term observatories, such as Ocean Weather Station Papa (Freeland, 
2007), the Hawaii Ocean Time-series program (HOT, Karl and Roger, 
1996), and DYFAMED (Coppola et al., 2024).

Overall, international and regional efforts provided the framework to 
identify, set up and implement observing systems. Nowadays, with the 
support of UNESCO, these actions are progressively integrated 
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worldwide as the Global Ocean Observing System (GOOS, Dexter and 
Summerhayes, 2010; Moltmann et al., 2019; Tanhua et al., 2019). The 
GOOS successful implementation relies on regional initiatives and on 
the capacity to account for scientific and technological specificities. In 
this regard, the Indian Ocean Observing System (IndOOS) is one of the 
main regional components of this global organizational structure. It has 
coordinated observational efforts over the Indian Ocean during the first 
decade of the 21st century, through several international hydrographic 
surveys (McPhaden et al., 2024).

The IndOOS-2 consortium recently reviewed successes and failures 
of the initial design (IndOOS-2 Full Report, 2019, Beal et al., 2020; 
Hermes et al., 2019). Among them, the severe lack of biogeochemical 
observations in the Indian Ocean was highlighted, especially in the 
southern hemisphere, leaving ocean-colour satellite as the only regular 
and continuous source of biogeochemical data (Lévy et al., 2007; 
Resplandy et al., 2009; George et al., 2018; Guo et al., 2022). In 
response, the consortium proposed a roadmap for the horizon 2030 in 
order to address the needs for expansion of IndOOS components. This is 
particularly the case of the Argo network which is relatively coarse 
compared to other oceanic basins. In its actionable recommendation A1 
of tier II (Extend IndOOS capacities to better address scientific and 
operational drivers, (IndOOS-2 Full Report, 2019)), the consortium 
dimensioned 200 active BGC-Argo floats throughout the Indian Ocean, 
with priority deployments in productive regions such as upwellings 
(Vinayachandran et al., 2021).

In a close perspective, the roadmap intends to anticipate societal 
needs for adaptation and resilience to climate change. This is particu
larly relevant in the Southwestern Indian Ocean (SWIO), where food 
resources mainly depend on fisheries (Moustahfid et al., 2018; Taylor 
et al., 2019) which are conditioned by primary production (Pauly and 
Christensen, 1995; Chassot et al., 2010; Marshak and Link, 2021; Marsac 

et al., 2024). Therefore, given the major climatic signals affecting this 
region (Saji et al., 1999; Roxy et al., 2014; Vidya et al., 2020; Dalpadado 
et al., 2024), enhanced monitoring of marine ecosystems becomes 
essential.

In this context, the Indian Ocean expedition conducted by Monaco 
Explorations in October–November 2022 (hereinafter the ME-IO cruise) 
supported the deployment of seventeen BGC-Argo floats over the SWIO. 
This study relates the preparation and the outcomes of this initiative. 
Section 3 outlines the design of the array: the deployment strategy 
tailored for the ME-IO cruise, based on previous experiences (Talley 
et al., 2019; D’Ortenzio et al., 2020) that intends to meet the actionable 
recommendations of the IndOOS-2 roadmap. In Section 4, the spring
time hydrography of the SWIO is described using the dataset collected 
during the ME-IO cruise. The seasonal modulations of its biogeochem
ical conditions are drawn using the BGC-Argo array dataset after two 
years of operations. Finally, the deployment strategy is discussed in 
Section 5, offering guidelines for future deployments in the SWIO.

2. Material and methods

The study region, referred hereinafter to as the SWIO, extends 
meridionally between the Equator and 40◦S, and zonally between 30◦E 
and 80◦E (Fig. 1a). The datasets presented hereafter were extracted 
exclusively within these geographical boundaries. The Mozambique 
Channel and the Mozambique Basin were excluded from the study re
gion. The bioregionalization used for the deployment strategy is pre
sented in Section 2.1. The data collections of the ME-IO cruise are 
described in Section 2.2. Argo and BGC-Argo data collections are pre
sented in Section 2.3. The diagnostic tools used in the analysis are 
detailed in Section 2.4.

Fig. 1. a) schematic diagram assembling the main currents and oceanographic features over the SWIO. b) mean dynamic topography at 10 dbar relative to 1000 dbar 
(in dyn⋅m). c) mean dynamic topography at 400 dbar relative to 1000 dbar (in dyn⋅m). d) meridional section of temperature (◦C), isopycnals 24.8, 26.0, 26.8 
indicated in black lines, section location indicated by the red box in inset. e) same as (d) for salinity; Subtropical Underwater (STUW), Central Water (CW), Antarctic 
intermediate water (AAIW) and Red Sea overflow water (RSOW) are indicated. f) same as (d) for oxygen concentration (μmol⋅kg‾1). g) same as (d) for nitrate 
concentrations (μmol⋅kg‾1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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2.1. Bioregionalization of the SWIO using satellite ocean colour

A climatology was set up over the SWIO following the procedure 
described in Baudena et al. (2025) using surface chlorophyll concen
trations from ocean colour satellites (ChlSat) as provided in the CMEMS 
catalogue (Globcolour L3 product). Annual cycles of ChlSat were 
derived at a weekly resolution by averaging available data over the 
period October 2022–September 2024 and within pixels of resolution 
0.5◦. Normalized annual ChlSat cycles were computed by dividing each 
time series by its annual maximum.

The Ocean colour climatology was partitioned into four clusters 
using the k-means algorithm (Hartigan and Wong, 1979; Ahmed et al., 
2020) following the methodology successfully applied in D’Ortenzio and 
Ribera d’Alcalà (2009), Marchese et al. (2019), Mayot et al. (2016), 
Kheireddine et al. (2021), Ardyna et al. (2017), D’Ortenzio et al. (2012), 
and Baudena et al. (2025). These clusters form subgroups, assembled 
together according to similar seasonal patterns. As detailed in the Sup
plementary Material C, a partition into four clusters was found to be 
optimal, and led to distinct seasonal patterns (Figure C2b) associated 
with spatial extensions covering the SWIO (Figure C2a).

2.2. Ship-borne reference datasets

The ME-IO expedition was conducted on board the S.A. Agulhas II 
and supported a multi-disciplinary panel of field activities. Among them, 
oceanographic stations were carried out down to 2000 m depth using a 
CTD-rosette composed of a carousel of 24 Niskin bottles, and a Sea-Bird 
SBE911+ underwater unit. High accuracy sensors allowed measurement 
of pressure, temperature, conductivity, oxygen, nitrate, beam trans
mission and chlorophyll fluorescence at 24 Hz resolution. Sensors’ data 
were processed into 1-m resolution vertical profiles as in Taillandier 
et al. (2018). Salinity and potential density anomaly referenced to the 
surface (hereafter designated as density) were derived from the primary 
CTD measurements. Water samples collected by the Niskin bottles were 
taken for quantification of biogenic elements (dissolved oxygen, mac
ronutrients, salinity, alkalinity and pH) and pigment concentrations at 
discrete depth levels. CTD profiles and laboratory measurements were 
processed post-cruise and freely distributed into quality-controlled sci
entific data collections (Taillandier et al., 2024).

For phytoplankton pigment determination, seawater samples of 2.7 L 
were filtered through Whatman GF/F filters (0.7 μm pore size). Filters 
were immediately flash-frozen in liquid nitrogen before storage at 

Fig. 1. (continued).
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− 80 ◦C, then transported in liquid nitrogen dry shippers to the SAPIGH 
national high performance liquid chromatography (HPLC) analytical 
service at the Institut de la Mer de Villefranche. Pigment extraction and 
analysis were carried out according to the method described in Ras et al. 
(2008). Total chlorophyll-a (TChl-a) sums chlorophyll-a (Chl-a) and 
divinyl-Chlorophyll-a (DVChl-a). TChl-a is the universal proxy for 
phytoplankton biomass and supports the in-situ calibration of the fluo
rometers that equip the CTD-rosette and the BGC-Argo floats (Supple
mentary Material A). Accessory pigments (other chlorophylls and 
carotenoids) are specific to phytoplankton groups and their respective 
proportions to TChl-a serve as a proxy of the community composition. 
Eight pigments were used as biomarkers of several phytoplankton taxa: 
DVChl-a (prochlorophytes), peridinin (dinoflagellates), fucoxanthin 
(diatoms), alloxanthin (cryptophytes), zeaxanthin (cyanobacteria, pro
chlorophytes), 19′-butanoyloxyfucoxanthin (19′-But, pelagophytes, 
prymnesiophytes), 19′-hexanoyloxyfucoxanthin (19′-Hex, prymnesio
phytes) and Chl-b (chlorophytes).

2.3. Argo and BGC-Argo data collections

The Argo program sustains a global array of physical and biogeo
chemical autonomous sensors over a fleet of freely drifting profiling 
floats (Owens et al., 2022). The BGC-Argo floats measure pressure, 
salinity and temperature over the first 2 km of the water column, 
together with essential biogeochemical variables: pH, oxygen, nitrate, 
chlorophyll fluorescence, particle backscattering, and downwelling 
irradiance (Bittig et al., 2019). Collected datasets are quality-controlled 
and freely distributed by the different data assembly centers of the Argo 
program (Argo, 2000).

To support the results presented in Section 3.1, all the Argo profiles 
collected within the SWIO region (extending from the Equator and 40◦S 
and from 30◦E to 80◦E) between October 2022 and September 2024 
were considered to provide contemporary distributions of temperature, 
salinity, oxygen, and nitrate concentrations in the upper 1.5 km layer 
(302 floats and 8518 profiles). When available, Argo data in adjusted 
delayed mode were prioritized over real-time data.

Seventeen BGC-Argo floats were deployed at reference oceano
graphic stations occupied during the ME-IO expedition (Table 1). 
Metrological verification and interoperability of the autonomous fluo
rescence sensors were performed versus the HPLC dataset and a scale 
factor was estimated for each individual sensor (Supplementary Mate
rial A). After two years of operation, thirteen floats stayed in their 
deployment zone for more than a year while four floats left their 
deployment zone. Only the first group has been considered for the 
subsequent analysis of phytoplankton cycles presented in Section 4.3. 
This selection provides twenty-four annual cycles individually collected 
and referenced to the ship-borne measurements.

2.4. Diagnostics

Applied to the Argo data selection, dynamic height (in dyn⋅m) rela
tive to a reference geopotential at 1000 dbar was computed as the in
tegral of specific volume anomalies between 10 and 1000 dbar and 
between 400 and 1000 dbar. Horizontal mapping of this quantity in
dicates circulations tangential to the contours; gradients normal to 
contours allow the sizing of geostrophic currents at surface, and at 400 
m depth (Pond and Pickard, 1983). Interpolation of dynamic topography 
was performed using a weighted average gridding method (provided by 

Table 1 
List of the 17 BGC-Argo floats deployed during the ME-IO expedition. Sensors: optode for oxygen (O), ECO-triplet for Chl-a fluorescence (A); SUNA for nitrate (N). 
Regional distribution: Seychelles Chagos Thermocline Ridge (SCTR), South Equatorial Current (SEC), subtropical gyre (STG), Madagascar Bloom (MB).

FLEET STATUS DEPLOYMENT

WMO Project Sensors Number of 
profiles

Period Resolution (in 
days)

Regional 
distribution

Date Latitude Longitude Scale factor 
TChla-FChla

3902471 REFINE OA 45 01/11/22–27/ 
11/23

8.7 SCTR 
344 profiles (39 
%) 
9 annual cycles

2022-11- 
02

5◦59.910′S 59◦59.524′E 0.9

5906539 GO-BGC NOA 70 02/11/22-21/ 
09/24

9.9 2022-11- 
02

5◦59.831′S 59◦59.606′E 0.7

6990504 MONACO OA 70 01/11/22–24/ 
09/24

9.9 2022-11- 
02

5◦59.515′S 60◦00.379′E 0.85

4902623 CANADA OA 69 28/10/22-08/ 
09/24

9.9 2022-10- 
28

5◦30.041′S 52◦00.093′E 1.35

6990503 REFINE OA 90 28/10/22–25/ 
09/24

7.8 2022-10- 
28

5◦30.114′S 52◦00.164′E 1

4902626 CANADA OA 70 18/10/22-08/ 
09/24

9.9 SEC 
354 profiles (41 
%) 
10 annual cycles

2022-10- 
18

10◦45.057′S 50◦00.246′E 0.7

5906537 GO-BGC NOA 68 18/11/22-17/ 
09/24

9.9 2022-11- 
17

12◦28.000′S 60◦32.379′E 0.7

5906540 GO-BGC NOA 71 27/10/22–25/ 
09/24

9.9 2022-10- 
27

8◦00.000′S 48◦30.000′E 0.7

5906970 REFINE NOA 73 16/10/22-22/ 
09/24

9.7 2022-10- 
16

12◦40.220′S 53◦30.021′E 0.7

6990505 NAOS NOA 72 16/10/22-17/ 
09/24

9.8 2022-10- 
16

12◦40.126′S 53◦29.927′E 0.85

4902620 CANADA OA 70 16/10/22-05/ 
09/24

9.9 STG 
107 profiles (12 
%) 
3 annual cycles

2022-10- 
15

19◦30.102′S 54◦59.991′E 1.15

5906536 GO-BGC NOA 37 15/10/22-21/ 
10/23

10.1 2022-10- 
15

19◦30.102′S 54◦59.991′E 1.45

5906538 GO-BGC NOA 68 27/11/22–24/ 
09/24

9.8 MB 
68 profiles (8 %) 
2 annual cycles

2022-11- 
26

27◦20.029′S 49◦59.938′E 1.15

5906971 NAOS NOA 70 28/11/22-05/ 
09/24

9.2 STG 
0 annual cycle

2022-11- 
27

32◦00.126′S 39◦59.729′E –

3902472 MONACO OA 67 26/11/22-05/ 
09/24

9.7 MB 
0 annual cycle

2022-11- 
25

24◦59.573′S 53◦00.547′E –

4902628 CANADA OA 66 22/11/22-05/ 
09/24

9.9 SEC 
0 annual cycle

2022-11- 
21

18◦14.998′S 58◦30.026′E –

5906972 NAOS NOA 76 22/10/22-05/ 
09/24

8.6 SEC 
0 annual cycle

2022-10- 
21

10◦18.401′S 44◦47.753′E –
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the software Ocean Data View v5.7) with an isotropic correlation length 
1.75◦. No specific extrapolation was applied toward the coasts, only 
subsequent masking of land pixels.

Meridional sections of temperature, salinity, oxygen, and nitrate 
were plotted considering a subset of profiles extracted inside the zonal 
extension of the Mascarene Basin. Field interpolation from the surface 
down to 1500 m depth was performed using a weighted average 
gridding method (provided by the software Ocean Data View v5.7) with a 
horizontal correlation length 0.4◦ and a vertical correlation length of 20 
m.

The mixed layer depth (MLD) was estimated from the density profiles 
as the depth where the residual mass content (i.e., the vertical integral of 
the density anomaly relative to surface) was equal to 1 kg m− 2 (Prieur 
et al., 2020). This buoyancy criterion was preferred to alternative ap
proaches such as a threshold density deviation to surface density of 0.03 
kg m− 3 (e.g., D’Ortenzio et al., 2005), in order to filter out short-term 
temporal variability of the mixed layer (notably its diurnal cycle) and 
reduce sensitivity to transient pycnoclines. The depth of three isopycnals 
of interest was retrieved from every density profile measured by the 
CTD-Rosette and the Argo floats. Deep chlorophyll maximum (DCM), 
surface Chl-a, and vertically integrated Chl-a in the first 400 m of the 
water column were computed from calibrated Chl-a fluorescence pro
files, following Mignot et al. (2014).

Diagnostics of residence times and connectivity were computed 
using all the Argo floats crossing the SWIO during more than a month. 
Overall, 1376 trajectories were extracted from the historical Argo data 
collection. The mean residence times were calculated as the average 
time spent by floats within each bioregion. Fates of individual trajec
tories were assembled to give a statistical view of the connectivity be
tween bioregions. Results of the Lagrangian analysis are detailed in the 
Supplementary Material D.

3. Deployment strategy

This section reports the setup of the deployment strategy with 
respect to: i) physical and biogeochemical contrasts over the SWIO 
reviewed from current knowledge and historical datasets; ii) specifics of 
the ME-IO cruise planning and the number of floats provided by the 
BGC-Argo program.

3.1. Review of circulation and water masses

Current knowledge depicts the SWIO as a major crossroad of the 
global ocean thermohaline circulation, where large-scale current sys
tems over the equatorial band, the subtropical gyre, and the circumpolar 
circulation interplay (Talley et al., 2011; Hernández-Guerra and Talley, 
2016; Phillips et al., 2024). In addition, the presence of numerous 
islands, banks, ridges and seamounts divide up the regional topography 
in three deep sub-basins interconnected by steep trenches or shallow 
sills (Fig. 1a): i) the Mozambique Basin, southern extension of the 
Mozambique Channel between Madagascar and the eastern African 
coast; ii) the Mascarene Basin located between the Mascarene Arc 
(Seychelles islands, Saya de Malha bank, Mauritius islands, La Réunion) 
and Madagascar; iii) the Madagascar Basin located southeast of the 
eponymous island and bounded to the south by the Southwest Indian 
Ridge.

Because of such a complex hydrodynamic environment, the charac
terization of oceanographic features can differ between reports, notably 
in terms of presence, location or persistence (Stramma and Lutjeharms, 
1997; Schott et al., 2002; Reid, 2003; Schott et al., 2009; Talley et al., 
2011; Phillips et al., 2021; Hood et al., 2024). Little is known about 
seasonal variability apart from the influence of the monsoon (Schott and 
Julian, 2001; Tripathy et al., 2020). Hence, a schematic climatological 
circulation diagram, supported by and in agreement with the analysis of 
the historical Argo dataset, is drawn in Fig. 1a. It is composed of three 
regional-scale circulation cells that occupy the meridional extension of 

the SWIO between the Equator and 40◦S.
At low latitudes, a cyclonic cell spreads over the tropical band, as 

shown by low dynamic height at surface and at 400 m depth (Fig. 1b and 
c). Associated with the tightening of isolines (Fig. 1b), the South Equa
torial Current (SEC) flows westward at about 12◦S across the Central 
Indian Basin, carrying nutrient-rich and cool surface waters from the 
Indonesian Through Flow (New et al., 2005). The SEC bends south
westward across the Mascarene Arc (Coopen et al., 2022), then reaches 
Madagascar at about 15◦S where it splits in two branches (Yamagami 
and Tozuka, 2015). The northward branch, so-called North East 
Madagascar Current (NEMC), flows into the Somali Basin where it 
connects with the East African Coastal Current (EACC). In continuity 
along the Equator, the South Equatorial Counter Current (SECC) flows 
eastward at the surface during the Northeast Monsoon, and in subsur
face during the Southwest Monsoon (Hermes and Reason, 2008; Yokoi 
et al., 2008; Schott et al., 2009). In the inner part of the cyclonic cell 
known as the Seychelles Chagos Thermocline Ridge (SCTR, Aguiar-
González et al., 2016), the thermocline shallows which infers 
nutrient-rich and productive conditions into the sunlit layer.

At higher latitudes, the anticyclonic subtropical gyre is shown by 
high dynamic height at 400 m depth (Fig. 1c). The gyre extends over the 
whole Mozambique Basin, delineated by the Agulhas Current and its 
retroflexion along the 40◦S parallel. It also occupies the Madagascar 
Basin and the southern part of the Mascarene Basin, delineated at 400 m 
depth by a westward flow along 20◦S connecting with the South East 
Madagascar Current (SEMC). SEMC reaches downstream the Agulhas 
Current at the southern opening of the Mozambique Channel (Vianello 
et al., 2020). On top of this feature, the surface dynamic topography 
(Fig. 1b) indicates low values over the Crozet Basin and high values 
north of the South Indian Counter Current (SICC, Menezes et al., 2014) 
that flows northeastward from the southern tip of Madagascar.

This third anticyclonic cell, so-called hereinafter Mascarene bowl, is a 
regional-scale feature of the surface circulation, with limited depth 
extent in absence of signature at 400 m depth (Fig. 1b), located in a 
latitudinal band between the SCTR and the subtropical gyre. Interest
ingly, the Mascarene bowl is spatially disconnected with the SCTR, but 
not with the subtropical gyre. It lays over the subtropical gyre in the 
Mascarene Basin and part of the Madagascar Basin, possibly as a 
regional response of the large-scale circulation systems to the presence 
of Madagascar (Nagura and McPhaden, 2018).

The three circulation cells would shape the distribution of seawater 
properties in the upper oceanic layer (Talley and Baringer, 1997). 
Meridional sections of temperature, salinity, oxygen and nitrate con
centrations are respectively drawn in Fig. 1d,e,f,g by aggregating every 
Argo data inside the Madagascar and Mascarene Basins. The Central 
Water (CW) composes the permanent thermocline by Subtropical Un
derwater (STUW) associated to a salinity maximum and by slightly 
denser Subtropical Mode Water (STMW) corresponding to a water body 
of homogeneous density 26.0. Below the thermocline, Antarctic Inter
mediate Water (AAIW) associated to a salinity minimum and Red Sea 
Overflow Water (RSOW) characterized by a local salinity maximum and 
oxygen minimum can be identified respectively at high and low latitudes 
of the section.

Along the meridional transect, CW remains delineated by isopycnals 
24.8 and 26.8. At the upper vertical bound, isopycnal 24.8 interfaces CW 
with surface waters, which are nitrate-depleted and oxygenated. Just 
below this interface, STUW (formed in the subtropical gyre, Talley et al., 
2011) and STMW (formed slightly more south at the subtropical front, 
Schott and McCreary, 2001) are poor in preformed nitrate. The two 
water masses get progressively enriched and deoxygenated by remi
neralization as they subduct north of 30◦S. At the lower vertical bound, 
isopycnal 26.8 interfaces CW with denser water bodies at intermediate 
depth. AAIW (formed at 1000 m depth in the confluence of the south
west Atlantic at the polar front, Fine, 1993; Nagura and McPhaden, 
2018) progressively shallows northwards in the section up to 600 m 
depth. North of 15◦S, its properties are progressively altered by mixing 
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with RSOW: salinity increases below the thermocline, with less 
oxygenated conditions and slightly higher nitrate concentrations.

The shape of the permanent thermocline can be characterized by 
three isopycnals 24.8, 26.8 associated to vertical extension of CW, and 
26.0 associated to STMW. At high latitudes, the thermocline is 700 m 
thick and gradual; gets sharper (300 m thick) and steeper at low lati
tudes. This latitudinal change is in agreement with the presence and the 
extension of the anticyclonic subtropical gyre. Moreover, the upper 
thermocline deepens down to 200 m depth at 30◦S; it is found shallow, 
into the first 10 m, north of 15◦S. This pattern is in agreement with the 
presence and extensions of the anticyclonic Mascarene bowl and the 
cyclonic SCTR.

3.2. Provisional plan of deployment

The ME-IO expedition was designed as a multidisciplinary research 
cruise lasting two months (October 1st – November 30th, 2022), with 
departure and arrival at Cape Town (South Africa). Four port calls were 
planned in SWIO islands with respect to other scientific activities: La 
Réunion (France), Aldabra, Mahé (Seychelles), and Mauritius.

In 2022, the SWIO one of the oceanic region the least covered by the 
BGC-Argo array. Hence, with the opportunity to survey the whole sector 
onboard the large research vessel S.A. Agulhas II, a total of 17 profiling 
floats equipped with biogeochemical sensors was gathered from inter
national contributions (Table 1). The US program GO-BGC provided 5 
units, the Canadian program Argo-Canada provided 4 units, the Prin
cipality of Monaco donated 1 unit to Seychelles and 1 unit to Mauritius, 

Fig. 2. a) mean ChlSat seasonal cycles in the four bioregions; b) spatial extension of the bioregions. The 5 ports of call planned for the ME-IO expedition are 
indicated: La Réunion (A), Aldabra (B), Mahé (C), Mauritius (D), Cape Town (E).
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the European project ERC REFINE provided 3 units, and the French 
project Equipex NAOS provided 3 units.

A specific deployment strategy was set up in order to cover the 
biogeochemical contrasts in the SWIO. Indicators of such contrasts were 
sketched from the distribution of the water masses (Section 3.1). As 
access to deep nutrient pools influences phytoplankton productivity, 
nitrate supply into the sunlit layer can be inferred by the depth and the 
thickness of the nitracline. In a latitudinal perspective (Fig. 1g), the 
shape of the nitracline is intrinsically associated to the distribution of 
CW and leads to contrasted situations: sharper and shallower nitraclines 
in the SCTR than in the subtropical gyre and the Mascarene Bowl. 
Noteworthy, the surface nutrient-rich waters carried by the SEC would 
provide a horizontal supply into the Mascarene and Somali Basins.

In order to refine the deployment strategy at the scale of the ME-IO 
cruise transects, a bioregionalization based on phytoplanktonic seasonal 
cycles was applied to the SWIO (following Huot et al., 2019; Supple
mentary Material C). The obtained partition delineates areas of similar 
surface chlorophyll seasonality (Figure C2) that match with the exten
sions of the SCTR, the SEC, and of the subtropical gyre north of 35◦S 
(Fig. 1a). Combining the latitudinal patterns of nutrient supply with this 
bioregionalization: i) SCTR was differentiated with the subtropical gyre, 
ii) the isolated parcels embedded in the zone of influence of the SEC 
were assembled with the encompassing bioregion.

This analysis led to a compilation of four bioregions with distinct 
ChlSat seasonal cycles (Fig. 2). The spatial signature of the SCTR (Fig. 2, 
in blue) is identifiable as a standalone band east of 55◦E and between 3◦S 
and 10◦S. Its seasonal cycle is characterized by a winter increase of 
chlorophyll concentration to 0.14 mg m− 3. During the rest of the year, 
the baseline remains below 0.10 mg m− 3 with another peak of lower 
magnitude mid-summer. In the areas influenced by the SEC and its 
northeastward extension (Fig. 2, in green), seasonality is marked: ChlSat 
almost triple between summer and winter peaking near 0.15 mg m− 3 in 
early spring. The subtropical gyre (Fig. 2, in red) presents a stable ChlSat 
concentration limited around 0.05 mg m− 3 all year long. The 
Madagascar bloom bioregion (Fig. 2, in yellow) is wrapped inside the 
subtropical gyre. The seasonal course of ChlSat presents a peak during 
summer, then it is damped to the cycle of the subtropical gyre 
(Longhurst, 2001; Uz, 2007; Srokosz and Quartly, 2013; Lévy et al., 
2007; Srokosz et al., 2015; Dilmahamod et al., 2019; Huhn et al., 2012; 
Metzl et al., 2022).

In association with bioregions, a Lagrangian analysis was conducted 
from historical Argo trajectories (Supplementary Material D). This 
approach estimated a mean residence time in each bioregion and their 
degree of interconnectivity (Table 2). The SCTR and SEC bioregions 
have limited retention times, with respectively seven and eight months; 
they display strong interconnectivity with two-way exchanges of almost 
40 % of floats. In the subtropical gyre, mean retention time increases to 
almost one year and the main export pathways are steered into the 
Mozambique and Crozet Basins.

Overall, the deployment strategy was set up on the basis of the 
preliminary cruise track (four transects joining the marks A-E, Fig. 2b), 
the number of available floats, the expected biogeochemical contrasts 
defined by four bioregions, and a quantitative estimation of residence 

times and connectivity pathways. The provisional plan of deployment 
consisted in a suite of oceanographic stations in the high seas (some in 
the national jurisdictions of the Seychelles, Mauritius and France) to be 
occupied during the ME-IO expedition. A number of BGC-Argo floats to 
be deployed was assigned to every stations. 

• The transect A-B would cross the inner Mascarene Basin in the sub
tropical gyre and along the SEC: one station northwest of La Réunion 
(2 units), one station in SEC (2 units), one station northeast of 
Madagascar (1 unit).

• The transect B-C would cross the Somali Basin: one station northeast 
of Aldabra (2 units), one station southwest of Mahé (2 units).

• The transect C-D along the Mascarene Arc would cross the SCTR and 
the upstream part of the SEC: one station southeast of Mahé (3 units), 
one station in SEC (1 unit), one station northeast of Mauritius (1 
unit).

• The transect D-E would cross the Madagascar and Mozambique Ba
sins in the region of the Madagascar Bloom: three stations were 
displayed at the southeastern tip of Madagascar at three parallels 
(25◦S, 27◦30′S, 30◦S, 3 units).

4. ME-IO deployments and outcomes

In spring 2022, the ME-IO expedition surveyed a large latitudinal 
band of the SWIO, crossing the Mozambique and Madagascar Basins, 
heading north in the Mascarene Basin, entering the Tropical band by the 
Amirante Trough and heading east from Comoros to Seychelles, then 
heading south to Mauritius along the Mascarene Arc, and finally 
returned to Cape Town. Along this path, seventeen BGC-Argo floats were 
successfully deployed at twelve oceanographic stations (Fig. 3a). The 
oceanic regimes and biogeochemical conditions crossed by the ME-IO 
expedition during the Austral springtime 2022 are reported in Sec
tions 4.1 and 4.2. In Section 4.3, two years of operations of the BGC-Argo 
array allowed to describe contrasted phytoplanktonic seasonal cycles 
and underlying biophysical interactions. Collected data from the station 
located inside the Mozambique Basin are considered only through Sec
tion 4.1. In relation to its trajectory, data collected by the float deployed 
there was not considered.

4.1. Oceanic regimes crossed by the ME-IO expedition

Twelve reference oceanographic stations associated with de
ployments of BGC-Argo floats were occupied during the ME-IO expedi
tion. The collected hydrographic records allowed to classify these 
stations following the oceanic regimes described in Section 3.1. Looking 
at the temperature-salinity diagram (Fig. 3b), four sets of profiles can be 
differentiated thanks to the composition of intermediate waters (density 
classes larger than 26.8): AAIW at high latitudes progressively mixing 
with RSOW at low latitudes. Considering Central Water (density class 
24.8–26.8), two groups appear separated by the transition between the 
subtropical gyre and the tropical band (respectively regions 3–4 and 
regions 1–2). Looking now at the nitrate-density diagram (Fig. 3c), 
differences between stations occur in the nitrate concentration of the 
CW (density class 24.8–26.8). It is almost nitrate-depleted in the high 
latitudes (region 4), and it becomes slightly enriched, reaching up to 4 
μmolN⋅kg‾1 in region 3. On the other hand, in regions 1 and 2, nitrate 
concentrations remain high in CW, but values sharply decrease to zero 
inside the surface layer.

The easternmost station of region 2 located within the Mascarene 
Arc, south of Saya de Malha bank (at 13◦S, 60◦E) presents the lowest 
salinity and the highest nitrate concentration of the region. This signa
ture attests of the SEC supply of fresh an rich water (New et al., 2005).

Overall, a correspondence can be done between every region 
sampled by the cruise and oceanic regimes of the SWIO. North of 15◦S, 
the classification identifies the SCTR with region 1 (in blue) and the SEC 
with region 2 (in green). South of 15◦S in the subtropical gyre, the 

Table 2 
Mean residence time of an Argo float inside every bioregion and fraction 
exported in the neighboring bioregion or outside the SWIO. Seychelles Chagos 
Thermocline Ridge (SCTR), South Equatorial Current (SEC), subtropical gyre 
(STG), Madagascar Bloom (MB).

bioregion mean residence time (in 
days)

interconnectivity (in %)

SCTR SEC STG +
MB

outside

SCTR 206 14 39 – 47
SEC 233 37 15 23 25
STG + MB 355 – 27 21 52
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classification distinguishes the Mascarene bowl (region 3, in yellow) 
with the inner subtropical gyre (region 4, in red). The locations of the 
four sets of stations occupied during the cruise (Fig. 3a) notably match 
with the bioregions (Fig. 2b).

4.2. Contrasted biogeochemical conditions

A springtime snapshot of the biogeochemical conditions in the SWIO 
was drawn using the reference dataset collected during the ME-IO 
expedition (Fig. 4a). During this season, the vertical distribution of 
biomass systematically displayed a DCM for all regions. This DCM varied 
in depth and size between regions: it was shallower and more pro
nounced in region 1, then progressively deepened and widened toward 
the southernmost regions. Surface values of biomass were significantly 
lower in the subtropical regions (3 and 4) than in the tropical regions (1 
and 2).

The nutrient supply in the sunlit layer could explain such distribution 

of biomass: it does not affect phytoplankton production in the tropical 
regions, whereas it is a limitation in the subtropical regions. The shape 
of the nitracline is sharp and shallow within the sunlit layer for regions 1 
and 2, whereas, in regions 3 and 4, it is more gradual leaving the sunlit 
layer nitrate-depleted. Overall, in this springtime situation, phyto
planktonic production followed distinct regimes: in the tropical band, 
nutrient-rich waters are upwelled into a relatively shallow surface layer 
that embeds biological activity. In the subtropical gyre, the surface layer 
is depleted in nutrients and phytoplankton biomass is concentrated at a 
depth which guarantees optimal availability of nutrient supply and light 
for its growth.

Interestingly, for most of the oceanographic stations visited during 
the cruise, the isopycnal 24.8 is indicative of the top of nitracline (gray 
dashed lines in Fig. 4a). This matchup was particularly marked in re
gions 1 and 2. This isopycnal corresponds to the base of the nutrient- 
depleted layer in regions 3 and 4 as the nitrate gradient is smoother 
there. This is in agreement with the nitrate-density diagram presented in 

Fig. 3. a) Ship track of the ME-IO expedition and location of float deployments (colour dots circled in black). The profile locations of floats during the two following 
years are also indicated (colour dots) as reported in Table 1 b) temperature-salinity diagram of the twelve CTD casts. c) nitrate-density diagram the twelve CTD casts. 
Isopycnals are shown as contours; gray crosses and lines indicate the isopycnals 24.8 and 26.8. The colours of dots and profiles correspond to regions 1 to 4 
respectively in blue, green, yellow and red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.)
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Fig. 4c, where this isopycnal marks the top of the CW and the beginning 
of the permanent thermocline. As described previously, in Section 3.1, 
the Mascarene Bowl deepens the CW and blocks the nitrate supply in the 
surface layer. Biological activity in region 3 should be reduced as a 
consequence, especially in comparison with that of region 4. On the 
other hand, the SEC brings nutrient-rich waters into the surface water 
layer enhancing biological activity in both regions 2 and 3.

The integrated biomass measurements show little variation between 
the regions, with internal regional differences in Total Chlorophyll-a 
being more pronounced than inter-regional gaps. (Fig. 4b). Phyto
plankton pigments assemblages can be indicative of the phytoplankton 
community encountered. In the four defined regions, DVChl-a domi
nates the pigment assemblage comprising over 25 % of TChl-a, followed 
by 19′-Hex and zeaxanthin, suggesting a community rich in nano- and 
pico-plankton (e.g., prochlorophytes, cyanobacteria, prymnesiophytes). 
Region 4 stands out with over 50 % representation of DVChl-a and 
zeaxanthin, indicating a higher prevalence of pico-plankton, while 
showing a decline in prymnesiophyte. In this region, and contrary to the 

three other regions, 19′-Hex-containing species contribute less than 
Zeaxanthin-containing species to TChl-a, indicating a decrease in 
prymnesiophytes cell number. On the other hand, the small proportion 
of peridinin and fucoxanthin may indicate the low abundance of larger 
cells such as dinoflagellates or diatoms.

Overall, phytoplankton exhibit significant variation in abundance 
and type across different water bodies (Fogg and Thake, 1987). The 
patterns observed in our results align with the general concept of 
phytoplankton distribution. The nutrient supply in the sunlit layer can 
help explain this biomass distribution: in tropical regions, nutrient in
jection by upwellings and the SEC foster biological activity dominated 
by nano- and pico-plankton, whereas nutrient availability becomes a 
limiting factor in subtropical areas.

4.3. Phytoplanktonic seasonal cycles

The observation of the springtime biogeochemical conditions can be 
extended over time thanks to the array of autonomous sensors deployed 

Fig. 4. a) profiles of Total Chlorophyll-a measured by HPLC (thick dotted lines) and nitrate concentrations (continuous thin line) at the eleven CTD casts of the ME- 
IO expedition north of 30◦S. The depth of isopycnal 24.8 is indicated in horizontal dashed gray lines. Profiles are classified by region and ordered from west to east. b) 
regional average and standard deviation of profiles collected in every region, proportion of significant pigments (integrated in the HPLC profile) as normalized by 
integrated TChl-a (range reported on above each bar).
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during the cruise. In order to inspect seasonal changes, a subset of BGC- 
Argo floats was selected according to their dispersion in the four regions 
of interest (Fig. 3a). For the sake of metrological consistency, each 
selected float sampled a sole region during at least one year. Overall, 
twenty-four annual time series were extracted from the data collected by 
the thirteen BGC-Argo floats (Table 1).

The seasonal evolution of Chl-a fluorescence in the upper 250 m 
could be documented in every region (Fig. 5, lower panel). The DCM- 
shape characterized during the ME-IO cruise was reproduced during 
the whole year with significant modulations in amplitude, depth, and 
size. Mixing episodes, proxied by MLD deepening during winter, 
dampen the DCM signature as phytoplankton biomass is dispersed to
ward the surface. These events were longer in regions 1 and 2 (from July 
to September) than in region 4 (only during August), as also documented 
in the seasonal courses of surface Chl-a (Fig. 5, middle panels). However, 
these seasonal modulations were moderately reflected into the course of 
integrated Chl-a (Fig. 5, upper panels) that remained in the range of 
20–35 mg m‾2 for all regions.

In order to characterize such changes in the phytoplanktonic dy
namics, biophysical interactions were analyzed with respect to the 
seasonal course of the MLD and the isopycnal 24.8 (Fig. 4, bottom 
panels). Chosen as a proxy of the nitracline, the isopycnal 24.8 would 
mark the decline of nitrate in the sunlit layer in the tropical band (re
gions 1 and 2), whereas in the subtropical gyre (regions 3 and 4), this 
isopycnal would sign the top of the nitrate reservoir. Such correspon
dence between isopycnal 24.8 and the nitracline can be consolidated in 
the view of nitrate time series collected by individual BGC-Argo floats 
(Supplementary Material B).

In region 1, the isopycnal 24.8 was located 20 m below the DCM and 
remained shallow in winter as well in summer. The isopycnal 24.8 
quickly deepened in July, the DCM remained shallow and slowly 

decayed by the end of winter. The course of surface Chl-a followed with 
the mixed layer depth which deepened down to 40 m in summer and in 
winter, without reaching the DCM. Compensating effects of both MLD 
and isopycnal 24.8 deepening (less access to nitrate but more access to 
light) would have maintained the phytoplankton ecosystem during the 
whole winter. Same results were magnified in region 2. There, the iso
pycnal 24.8 was on average deeper than in region 1, and dropped down 
to 150 m at the end of winter. The MLD also reached deeper levels (down 
to 60 m) during the whole winter. The DCM was slightly deeper in this 
region but reached the mixed layer during winter.

In region 3, the phytoplankton dynamics was stable during the year, 
because of the limited access to nutrients. The DCM remained at 100 m 
depth, whereas the isopycnal 24.8 remained 75 m below. The MLD 
varied between 20 m in summer and 60 m in winter. In this season, part 
of the phytoplankton biomass was entrained in the mixed layer associ
ated to a slight increase in the surface Chl-a. The nutrient barrier was 
relaxed in the region 4, the DCM and the isopycnal 24.8 were both 
located at 75 m depth. The DCM followed a summer deepening and 
winter shallowing associated to seasonal sunlight variations. The MLD 
increased in winter down to 70 m depth then shallowed at the beginning 
of spring, triggering a phytoplankton bloom that rapidly decayed in 
absence of nutrient supply.

Overall, the nitrate supply was limited in the subtropical gyre where 
oligotrophic conditions were installed all year long. Such conditions 
were reinforced by the Mascarene Bowl which deepened the nitracline 
away from the sunlit layer. These hydrodynamical conditions were 
released more south, and combined with sharper winter conditions that 
extended at depth the seasonal excursion of the mixed layer, occasional 
spring blooms could occur. Nutrient limitation was released in the 
tropical band: upwelling conditions persisted during the whole year, 
even if seasonal modulations were observed in association with changes 

Fig. 5. Average seasonal cycle of each region as seen by the BGC-Argo dataset. Upper panels: depth-integrated Chl-a estimated by fluorescence. Middle panel: surface 
Chl-a estimated by fluorescence. Lower panel: Chl-a fluorescence profiles (colourbar), mixed layer depth (MLD, red lines), deep chlorophyll maximum (DCM, green 
lines), depth of isopycnal 24.8 (blue line), and depth of isopycnal 26.0 (cyan line). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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in the thermocline depth and stratification.

5. Discussion

During the ME-IO expedition, we deployed seventeen BGC-Argo 
floats across twelve oceanographic stations. Thanks to the deployment 
strategy, the float array effectively sampled the large scale biophysical 
regimes of the SWIO collecting more than 1000 profiles. With only one 
faulty unit and three profilers drifting away from their targeted sampling 
zones, thirteen floats remain operational in the region. Despite a clear 
signature in preliminary analyses and targeted deployment stations, the 
Madagascar bloom was not sampled by the BGC-Argo array.

Collected data offer exceptional insight into the underlying mecha
nisms driving the subsurface bio-physical processes and consequently 
phytoplankton seasonality in the SWIO. These observations extended 
the ME-IO expedition sampling and complemented the space borne 
description of the tropical band seasonality (Lévy et al., 2007; Resplandy 
et al., 2009; Aguiar-González et al., 2016; George et al., 2018, Section 
3.2). The role of circulation in regulating access to nutrient, hence 
shaping productivity, is particularly highlighted within the Mascarene 
bowl.

The SCTR exhibits strong sensitivity to climatic variability 
(Resplandy et al., 2009; Dilmahamod et al., 2016; Lee et al., 2022; 
Yamagata et al., 2024), with documented implications for regional 
fisheries (Robinson et al., 2010; Kim and Na, 2022; Marsac et al., 2024). 
Given its significance, sustained, zonally resolved observations of this 
region with Argo and BGC-Argo floats is a priority (IndOOS-2 Full 
Report, 2019). Due to currents, continuous deployment efforts are 
essential in maintaining observational coverage of the SEC. In contrast, 
float retention is expected to be higher within the subtropical gyre, 
thereby reducing the servicing demands. However, over the Madagascar 
Ridge located at the southern tip of the island, dynamic southwestward 
pathways carried three floats towards the African coast (Vianello et al., 
2020). Consequently, targeted field campaigns may offer a more effec
tive approach to resolve the drivers of the Madagascar bloom. In the 
subtropical band, Read et al. (2000) highlighted that nitrate is not the 
limiting factor for phytoplankton growth. Therefore, any extrapolation 
of the described subtropical gyre dynamics, should be limited to regions 
north of 30◦S.

The partitioning of the SWIO into bio-physical regimes is coherent 
seen from satellite and with the BGC-Argo float array. Applying the same 
frame at finer ecological scales becomes more delicate. Our in-situ data 
emphasize the role of the nano- and pico-phytoplankton compartment in 
the biomass production of these tropical and subtropical areas. Never
theless, pigment data also suggest a predominant role of prokaryotes in 
exploiting these low nutrient conditions and driving primary produc
tion. Brock et al., 2024have shown that two clades of Prochlorococcus 
dominated the microbial community in the Indian Ocean. In our study, 
cell counts by microscopy as well as flow cytometry data could help 
assess the spatial heterogeneity of eukaryotic and bacterial commu
nities. The effect of environmental drivers of each region could then be 
associated with a diversity shift. DNA sequencing and taxonomic 
assignment would also enhance our understanding of biodiversity and 
connect it with the physical and chemical properties of the studied re
gions. Hence, combining the discrete sampling from the ME-IO expedi
tion with bio-optical measurements (e.g., fluorescence chlorophyll-a 
and backscattering coefficient) from the BGC-Argo float time series will 
help establish specific relationships to gain a deeper understanding of 
the dynamics of phytoplankton communities and their interactions with 
grazing and larger predators, as highlighted by Rembauville et al. 
(2017) for other oceanic regions.

Numerical models provide a powerful framework to address obser
vational gaps. These models also facilitate the integration of inter
connected domains, coupling natural (physical oceanography, 
biogeochemistry, and trophic levels) and human systems (fisheries and 
broader socio-ecological systems). The biogeochemical measurements 

collected by the deployed float array represent a foundational dataset, 
essential for the development of coupled model simulations (Hermes 
et al., 2019; Schwarz, 2020).

6. Conclusion

This study presents the experimental strategy followed to set-up an 
array of BGC-Argo floats in the SWIO, the outcomes of its deployment 
after two years of operations, and guidelines for future initiatives.

To design a regional array of biogeochemical floats, the deployment 
strategy was grounded on past experiences, existing knowledge, and the 
analysis of historical datasets. First, we identified areas of contrasted 
oceanic regimes and biogeochemical conditions to be covered by the 
array: the tropical band with productive upwellings associated to the 
Seychelles Chagos Thermocline Ridge, the band overlaying the South 
Equatorial Current, and the subtropical gyre. Second, we assessed the 
residence times inside each potential deployment zone using historical 
float trajectories. Third, we selected deployment stations along the 
provisional track of the expedition on the basis of the number of floats. 
The resulting array covers the three biophysical regimes, with denser 
float distribution north of 15◦S, aligning with IndOOS-2 recommenda
tions to enhance biogeochemical observations in productive areas.

Following this strategy, a fleet of 17 biogeochemical floats has been 
successfully deployed during the expedition in October–November 
2022. The data collection gathers physical (temperature, salinity), 
chemical (oxygen, pH, nitrate) and optical (chlorophyll fluorescence, 
backscattering, irradiance) seawater properties as continuous vertical 
profiles in the upper 2 km. In-situ metrological verification of the 
autonomous sensors and data quality control could be achieved at float 
deployments concomitantly to ship-borne reference measurements.

After two years of operations, the spatio-temporal distribution 
covered by the fleet confirmed that the goals of the deployment strategy 
have been reached. The observing system allowed to describe a variety 
of oceanic regimes, circulation features and associated biogeochemical 
conditions over the SWIO. As shown by the deployed BGC-Argo float 
array, the physical-biogeochemical functioning is strongly controlled by 
the distribution of water masses which stratification regulates the access 
to nutrients. Seasonal variations in nutrient supply, thermocline depth, 
and stratification drive the tropical band productivity with year-round 
upwelling conditions. In the subtropical gyre, nutrient barriers associ
ated to subduction of depleted subtropical water masses, limit further 
productivity. Oligotrophic conditions persist due to nutrient depletion 
by surface recirculation, although occasional spring blooms occur after 
intense enough mixing events.

While the results presented here are still preliminary, they demon
strate the vast potential of a globally coordinated, dense, and continu
ously maintained BGC-Argo array in supporting science and resilient 
regional governance.
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